
1
American Institute of Aeronautics and Astronautics

AIAA-99-4454

SOFTWARE LIFECYCLE THEMES FOR JPL MISSION DATA SYSTEM (MDS)
PROJECT

Anne B. Elson
Jet Propulsion Laboratory

California Institute of
Technology

Pasadena, Ca. 91109
aelson@jpl.nasa.gov

Abstract

Today there are many small deep space missions in
progress or in conception at the Jet Propulsion Labora-
tory. These missions have short lead times and small
budgets while still pursuing ambitious science and
technology goals. The short development times, the
small funding profiles and the overlapping schedules of
these new missions preclude the intensive, one-of-a-
kind software development, maintenance, and opera-
tions efforts that were possible during the era of the big
missions like Galileo and Cassini. How the laboratory
develops, maintains and operates mission software in
this new environment of multiple, concurrent, better,
faster, and cheaper (BFC) missions will be crucial to
the success of these new missions. The Mission Data
System Project (MDS) team is developing core mission
data system software for a group of the new BFC mis-
sions. As part of this effort the MDS team is piloting a
different approach to mission software development for
the laboratory. This paper describes the MDS software
lifecycle approach and the ways in which this approach
differs from past mission software development efforts.
Additionally this paper discusses the ways in which the
MDS software development approach should contribute
to the success of the MDS BFC customer missions.

MDS Overview

In April of 1998 the Jet Propulsion Laboratory (JPL)
initiated the Mission Data System Project (MDS). This
project has been chartered to rethink the entire mission
software lifecycle for the types of deep space missions
that JPL has traditionally designed, built and flown.

Copyright 1999 by the American Institute of Aeronau-
tics and Astronautics, Inc. The U.S. Government has a
royalty-free license to exercise all rights under the
copyright claimed herein for governmental purposes.
All other rights are reserved by the copyright owner.

The MDS team has proposed the development of a uni-
fied flight, ground and test software data system for
deep space missions. This software system will be
component based and adaptable to a variety of current
and future missions. The MDS is characterized by a
number of architectural themes. These themes and how
they contribute to the success of better, faster, cheaper
(BFC) missions are discussed in detail in a related con-
ference paper “Software Architectural Themes in the
Mission Data System”.1 The MDS architectural ap-
proach can be summarized as follows:

The MDS software development approach makes a
state based architecture the focal point of mission soft-
ware analysis and design. This approach proceeds from
two central architectural principles and their corollaries:

Subsystems are constructed from architectural elements
– not the other way around

•� Find the problems in common
•� Create common solutions
•� Tailor the general solutions to the particular

problems

Managing interactions is the foundation of a design
•� Find the interaction mechanisms (de-coupling

where feasible)
•� Otherwise, create coordination services for the

interactions
•� Control interactions through these common

services rather than function-to-function

The MDS team is building a set of mission software
frameworks based on these principles. This set of
frameworks forms the core around which the rest of the
MDS software will be built. The frameworks are con-
structed around a few basic notions familiar to space-
craft system design. The most important of these is the
notion of “State”. State is defined as a representation
of the momentary condition of an evolving system and
is a central organizing theme of the MDS architecture.

2
American Institute of Aeronautics and Astronautics

Models describe how a system’s state evolves. State
information and models together provide the user of a
system with the information on how to operate that
system, to determine or control its future, and to assess
its performance. MDS developers are producing state
determination and control software frameworks (pat-
terns) that will be instantiated within each of the soft-
ware application domains included within the MDS.

The MDS team will produce all of the standard flight,
ground and test software capabilities that deep space
mission customers typically need during mission devel-
opment. The MDS team will also produce some mis-
sion operations software. However not all existing JPL
ground system software is expected to be rewritten for
the first MDS development effort. The MDS team will
provide a seamless interface between any new MDS
ground system software and those parts of the previ-
ously existing ground system that remain.

The MDS team will design and build a mission soft-
ware system for a fictional reference mission. This
mission’s operational scenarios, spacecraft design,
ground system capabilities, and test environment will
look very similar to those of the first MDS customer
mission, the Europa Orbiter (EO) Mission of the Outer
Planets / Solar Probe (OP/SP) Project. The MDS refer-
ence mission will also contain features and capabilities
that demonstrate MDS software flexibility and adapt-
ability for future mission technologies and science op-
portunities other than those needed by the Europa Or-
biter Mission. The Europa Orbiter customer will adapt
MDS frameworks and application subsystem instantia-
tions to their own mission needs. The Europa software
team will use some pieces of the MDS reference mis-
sion software directly. The EO team will also take
MDS application software frameworks used to generate
the reference mission and adapt, extend and/or replace
portions of them to create their own mission unique
software system. In either case the customer mission is
expected to maintain core MDS architectural themes
that have been implemented as a set of software pat-
terns throughout the MDS application frameworks.

The initial MDS software system will provide mission
software capabilities that are equivalent to mission
software capabilities of recent JPL deep space missions.
As noted above however MDS software will also con-
tain several new, and/or expanded mission software
capabilities. One of the team’s goals is to produce a
software product that enables spacecraft for deep space
missions to be both more autonomous and easier to
operate than the mission software systems of previous
missons. Autonomy concepts that were tested with the
Deep Space 1 (DS-1) Remote Agent Experiment will be
enhanced and extended within the MDS. The MDS

team will build a system in which optical navigation
products are produced on board the spacecraft and then
used by it autonomously to compute new trajectories.

By providing a component based architecture within a
unified flight ground system the MDS team is planning
to produce a software system that is easily reconfigur-
able. A component based design should facilitate
movement of software capabilities between the ground
and flight systems of mission customers. Location of
software capabilities such as spacecraft trajectory cor-
rection determination may depend upon the needs and
constraints of a particular mission or upon phases of
that mission. This capability could migrate from the
ground to the spacecraft as a mission’s needs and ob-
jectives changed over time.

MDS Software Lifecycle Approach

A lifecycle model provides a set of development guide-
lines to the developers. It identifies a set of develop-
ment phases and the work products (artifacts) to be
produced in each. The model helps to bring structure
and standardization (predictability) to an activity that
often appears to be chaotic and unpredictable. The
MDS software lifecycle can be viewed as a set nested
loops: one outer loop and an associated set of inner
loops. The MDS project will traverse one cycle of its
outer loop and multiple cycles of its inner loops to pro-
duce MDS flight, ground and test software for a mis-
sion customer.

In the MDS lifecycle the outer loop of the lifecycle
maps to management and software system engineering
activities. The outer loop divides into 4 phases: feasi-
bility, elaboration, construction and transition. The
MDS outer loop is primarily incremental but phases
overlap somewhat. The outer loop includes systems
requirements analysis, systems partitioning analysis
(primarily hardware software and flight ground parti-
tioning), object analysis, system architectural design,
system validation and test, and system maintenance.
Top level MDS requirements and systems analysis ef-
forts need to be incremental to support mission custom-
ers and the X2000 1st Delivery Project. These projects
must baseline top level system functional requirements
early their development lifecycle in order to make
timely hardware decisions. Many JPL deep space mis-
sions have fixed launch windows that if missed will not
re-appear for months or years. Hardware design as well
as hardware software trades need to be made early in a
mission project’s lifecycle and frozen so that the hard-
ware can be built (or procured), assembled and
launched on time. The MDS lifecycle approach with
its incremental outer loop activities accommodates this
need.

3
American Institute of Aeronautics and Astronautics

MDS inner loop activities and phases closely follow the
software lifecycle model of the MDS Object Oriented
Analysis and Design consultant, Bruce Douglass.
Douglass promotes a spiral software development life-
cycle model with iterative proto-typing.2, 3 In the
Douglass lifecycle model software developers traverse
a set of software lifecycle phases multiple times. Dur-
ing the earliest iterations of this lifecycle model devel-
opers implement a complete but thin version of the en-
tire system. All major system interfaces are imple-
mented but many if not most of the internals of the
software components attached to these interfaces are
only stubbed in. During each subsequent iteration of
the lifecycle development teams increase the capabili-
ties of groups of components. Each development cycle
has a particular technical focus. With each iteration of
a inner loop cycle work products (artifacts) grow in
their completeness and quality until all agreed upon
system requirements and constraints are achieved (or
re-negotiated).

For each circuit of the MDS outer loop multiple MDS
development teams working in parallel complete multi-
ple iterations (cycles) of a set of associated inner loops.
Each MDS inner loop represents one software domain
(one area of technical expertise for mission software
development) within the MDS. An inner loop is di-
vided into 3 phases of software development: analysis
and design, implementation, and evaluation and test.
Once system interfaces are implemented in the earliest
iterations of a inner loop cycle the development teams
can proceed somewhat asynchronously to one another
during subsequent inner cycles if they choose to do so.
The MDS team expects to have planned, periodic
alignments of inner loop completions across multiple
software domains (sometimes referred to as synchroni-
zation points) throughout the lifecycle. These are cur-
rently planned to occur at six month intervals. These
alignments provide for periodic re-integration of cross-
domain capabilities. They will also make available
interim releases of newly integrated software capabili-
ties to both customers and the X2000 First Delivery
Project for evaluation and test.

Use of OOA/OOD technicques in MDS

The MDS team is implementing MDS software using
object oriented analysis and design techniques. The
team is using UML (Unified Modeling Language) to
communicate their analysis, design, implementation
and test decisions. The team is using an OOA/OOD
case tool that implements analysis, design, and imple-
mentation models using UML notation. The team’s
OOA/OOD consultant, Bruce Douglass, defines a sys-
tem model as “an organized, internally-consistent set of
abstractions that collaborate to achieve a system de-

scription at a desired level of detail and maturity”. 3

Throughout an MDS lifecycle the MDS team will de-
velop and/or refine and update various system views
(models) of the MDS within their case tool. Each
model is another view of the underlying system and is
not independent of the other views.

There are several OOA/OOD software case tools avail-
able commercially. The MDS team has decided to use
a tool called Rhapsody (this tool is produced by I-
Logix). The MDS team is currently capturing their
analysis and design decisions as a set of models within
this case tool. This tool is also capable of generating
code from some of the analysis and design models de-
veloped within it. The team expects to auto-generate
code to do analysis and design model verification. It
has not yet been decided whether or not the tool will be
used to produce the system’s first implementation mod-
els although in the interest of supporting BFC missions
this is an eventual goal of the MDS team.

The MDS team expects their tool and OOA/OOD
methodologies that it supports will help them with sys-
tem verification and with maintaining consistency be-
tween work products as domain teams move through
multiple cycles of the MDS inner loop. The Rhapsody
case tool enables MDS developers to produce executa-
ble models of the underlying system throughout its de-
velopment. Design concepts can be implemented
lightly and executed within the tool as an early check of
their feasibility and validity. MDS analysis models
(primarily UML sequence diagrams) can also serve as
inputs for test verification scenarios once the design has
been translated into code. The MDS team expects that
the use of the Rhapsody case tool in conjunction with
OOA/OOD methodologies will result in a more rigor-
ous and timely mission software development effort
than those of past mission projects. The core analysis
and design models that the MDS develops within Rhap-
sody can be combined, instantiated and extended in
different ways by various mission customers of MDS to
achieve their own unique mission needs. This approach
to mission software development should contribute
significantly to reduced software lifecycle costs for the
new BFC missions at the lab.

MDS Requirements Definition

The MDS team is using UML in their Rhapsody tool to
do requirements analysis. Traditionally JPL deep space
missions have captured requirements as textual state-
ments. Project requirements are identified via a hierar-
chical requirement analysis effort that proceeds along
hardware lines with project objectives forming the top
tier of the decomposition. Mission requirements are

4
American Institute of Aeronautics and Astronautics

captured and then expanded and decomposed into flight
and ground system requirements. Flight and ground
requirements are further decomposed into flight and
ground subsystems. A flight system might decompose
into a spacecraft, its science payload and the launch
vehicle. The spacecraft is further broken down into a
number of hardware based engineering subsystems such
as the command and data handling subsystem, the atti-
tude control subsystem, the telecommunications sub-
system, and so forth. Detailed hardware and software
requirements are then identified for each of the subsys-
tems. In the past requirements were captured manually
in various hierarchical system and subsystem require-
ments documents. Very recently mission projects at the
lab have opted to use a requirements tool, DOORS, to
capture their project requirements. This tool contains a
requirements database and supports links between re-
quirements at different levels of a requirements hierar-
chy. This tool has not changed how mission projects do
their requirements decomposition.

The MDS team is capturing MDS system and subsys-
tem requirements in Rhapsody. The MDS requirement
analysis approach is a black box functional requirement
analysis approach. It captures the capabilities the cur-
rent MDS development effort needs support in order to
achieve typical mission software capabilities for its first
mission customers. Rather than capturing requirements
as textual statements however MDS engineers capture
requirements as UML use cases and their accompany-
ing sequence diagrams. MDS use cases and sequence
diagrams collectively capture externally visible func-
tions and behaviors of the MDS. This is customer ori-
ented view of mission software requirements that says
nothing about how MDS software will be designed to
achieve these capabilities. Since MDS customer mis-
sions are capturing their mission requirements as tex-
tual statements in DOORS the MDS project has been
looking into how MDS use cases can be mapped to
customer project textual requirements statements in
DOORS. The Rhapsody tool currently supports the
export of the use case portion of its requirement analy-
sis model into a DOORS database. MDS customers can
link exported MDS use cases to the appropriate textual
statements in their project DOORS database to show
requirements tracing between MDS and the mission
project. A future revision of the Rhapsody tool is ex-
pected to also export sequence diagrams into a DOORS
database. This will allow a more complete mapping of
requirements statements between the two tools than is
currently supported.

Top level MDS use cases do not always distinguish
between hardware and software capabilities. In some
cases a use case denotes a capability that must be
jointly implemented by hardware and software. The

first MDS mission implementation will be on avionics
hardware supplied by the X2000 1st Delivery Project.
MDS and Europa Orbiter, the first MDS mission cus-
tomer that will use X2000 1st Delivery Project avionics
hardware, are working with X2000 1st Delivery Project
avionics engineers to make the appropriate hardware
software trades for functions that will be implemented
in both hardware and software.

Lower level MDS use cases will map to MDS software
subsystems. During detailed software development
(inner loop iterations) MDS domain teams will develop
use cases and sequence diagrams to capture the black
box functionality of their software subsystems. This
analysis will occur after a number of system level de-
sign decisions have occurred and so will only be black
box relative to the subsystem to for which they are be-
ing developed.

Lifecycle support for Early Hardware and
Delayed Software Decisions

Typically deep space missions require early commit-
ment to flight hardware in order that this hardware be
designed, built (either built in-house or procured), inte-
grated, and tested in time for launch. This is still true
for current JPL missions. The time that current BFC
mission projects have to make hardware requirements,
design and build decisions is significantly shorter than
that past mission development efforts such as Galileo
and Cassini. The MDS incremental systems engineer-
ing approach accommodates the need for mission pro-
jects to make hardware decisions early in their devel-
opment lifecycle. The MDS lifecycle approach sup-
ports the development and finalization of top-level
black box system and subsystem functional require-
ments within the elaboration segment of the MDS outer
loop cycle.

Once top level functionality is determined and hard-
ware software partitioning agreed to as part of a sys-
tems engineering activity in the MDS outer loop cycle
the MDS software development effort can proceed it-
eratively. The inner loop lifecycle allows software de-
signers and implementers to add software functionality
in stages. Developers can stage the addition of capa-
bilities according to the dictates of their particular mis-
sion. Typically missions require early development of
spacecraft flight software that will provide launch and
fault tolerant cruise control during the earliest part of
the mission. Many missions however can delay devel-
opment of their mission science and/or technology
software until just prior to the arrival of the spacecraft
at its destination. There may be years of cruise time for
the development this software. Both the MDS lifecycle

5
American Institute of Aeronautics and Astronautics

and the MDS component based software architecture
will facilitate a long duration, iterative software devel-
opment effort for missions that need this approach.

Mission Software Implemented as Single
Software System

In the past both JPL line management and JPL deep
space mission projects have contributed to rather frag-
mented mission software development efforts. Both
organizations have tended to view software as internal
to the flight or ground hardware subsystem in which it
resided and a subset of that subsystem’s capabilities.
This prevented cross-cutting and/or common software
capabilities from being dealt with systematically. It
also contributed to a duplication of software develop-
ment effort.

In previous mission software development efforts JPL
standards for software development processes were
sometimes unevenly applied to the development of
software under the control of a hardware focused sub-
system development effort. This resulted in software
products that varied widely from subsystem to subsys-
tem in quality, timeliness, maintainability and operabil-
ity. Additionally, while each subsystem development
effort involved the implementation of some software
functions unique to the subsystem, it usually also in-
volved the implementation of a large set of software
functions that were common to many software subsys-
tems in the project. However because each subsystem
was implemented by a separate organization the soft-
ware teams for each tended to implement the common
software functions differently. Only the external soft-
ware interfaces between subsystems were standardized.
And usually JPL systems engineers spent a great deal of
time and effort designing, documenting and verifying
the implementation of these interfaces with the partici-
pating subsystems. This approach to mission software
development at the lab resulted in unnecessarily large
software development, maintenance and operations
costs for a number of past JPL missions. In the era of
BFC missions it is an approach that the lab can no
longer afford.

The MDS team has chosen to develop all mission soft-
ware as a single mission software system. This ap-
proach allows common but distributed mission software
capabilities to be identified and handled globally.
Common software functions that would have been du-
plicated in many of the mission subsystems of past mis-
sions can now be identified and assigned to a single
domain team to develop. The team produces one set of
source code that is then instantiated in multiple soft-
ware application subsystems within the MDS. Unique
software functions will also be identified and assigned

to an MDS domain team with expertise in this function-
ality (some examples are spacecraft attitude control,
navigation, and telecommunications). Whether the
software is common or unique all MDS development
teams will follow the same software development proc-
esses. Developing mission software as a single system
within one organization should enable the production of
cost effective, quality mission software products that
avoid the software inconsistencies and duplications of
previous mission software development efforts

Executable Models

The MDS case tool, Rhapsody, includes the capability
to generate code from its models. One of the goals of
the MDS team is to be able to auto-generate real mis-
sion software from the models developed in this tool.
This is one of the ways in which software lifecycle
costs can be significantly reduced for lab based BFC
missions. The MDS team is expecting to also use the
auto-code generation feature of Rhapsody to generate
proto-type code to check the correctness of their
evolving models. For instance the team can generate
proto-type code to examine the feasibility of a particu-
lar design option. The team also can use Rhapsody
analysis models (use cases and their accompanying
sequence diagrams) as test inputs to system design
models to verify the correctness of the later. In short,
by using Rhapsody code generation capabilities the
team can cross-check their various model views of the
evolving mission software system throughout the de-
velopment of this system. This approach should save
development costs by catching analysis, design and
implementation flaws and inconsistencies earlier in the
project lifecycle than they might otherwise be caught.

Several JPL mission projects are using another I-Logix
tool, Statemate, to perform system analysis and design
trades. The Outer Planets / Solar Probe Project is one
of them. The MDS team has discussed the possible
integration of the Statemate and Rhapsody tools with I-
Logix representatives. One goal of this effort would be
the capability to transfer system model analysis data
from Statemate into Rhapsody automatically. This
would help to maintain consistency between system
analysis models generated in the Statemate tool with
software design and implementation models generated
in the Rhapsody tool. Another possible result of this
merger would be the capability to exercise Rhapsody
and Statemate models against one another to do analy-
sis and design trades in a simulated system environment
before any major hardware commitments were made.
An integrated model based development environment
has a lot of potential for reducing mission lifecycle
costs. It will be interesting to see what the I-Logix

6
American Institute of Aeronautics and Astronautics

team is able to achieve if and when they integrate these
two tools.

MDS support for Reuse and Adaptation

The analysis and design models that the MDS team
develops in Rhapsody will be central to the MDS
team’s reuse strategy. MDS customers will use exist-
ing MDS analysis and design models to form the base
from which they will build up their own mission unique
software system. Since the delivered MDS system will
be a collection of completed and partially completed
generic mission software capabilities MDS customers
will have to adapt and extend portions of the original
system to make it fit the needs of their particular mis-
sion. MDS plans to facilitate customer adaptations by
providing a series of adapter guideline documents. Ad-
ditionally the MDS team is providing customer mis-
sions with an adaptation example in the form of the
MDS reference mission.

The MDS team needs to develop a mission software
system that can be adapted to a variety of different
hardware platforms. The avionics hardware platform
that is being supplied by the X2000 1st Delivery Project
to MDS mission customers contains processors that use
different versions of COTS operating system software
and different C++ compilers. MDS customers want to
be able to re-host MDS applications. They want to be
able to move specific MDS software capabilities to
memories and processors other than those chosen by the
MDS team for the MDS reference mission. By imple-
menting a real-time extension of the Common Object
Request Broker Architecture (CORBA) the MDS team
will provide mission customers with capability to re-
host MDS developed capabilities. The ORB hides
messaging details between applications and between
communicating components within a specific applica-
tion. Applications using the ORB for messaging need
not know the location of the software with which they
are communicating. The ORB software will allow
MDS customers to instantiate MDS applications in lo-
cations and in combinations other than those chosen for
them by MDS team for the MDS reference mission.

MDS CORBA software should also facilitate post
launch migration of MDS based software functionality
if and when an MDS mission customer decides to mi-
grate a ground based capability to the spacecraft. The
MDS team may also make use of CORBA capabilities
to develop spacecraft fault protection and recovery al-
gorithms that can dynamically re-map critical software
functions to other hardware elements in the event of a
failure of a critical hardware element.

The MDS team will also provide low level hardware
proxy software to interface with underlying hardware.

This approach should hide hardware software interface
details from higher level application code. Application
code that needs hardware information will interface to
the hardware proxy software. This code will hide all the
hardware interface details from the application code.
MDS proxy frameworks should be easily modified
and/or replaced by mission customers when their hard-
ware differs from that assumed by MDS developers for
the MDS reference mission. For example the MDS
team plans to include a camera in the MDS reference
spacecraft. MDS developers will base their proxy inter-
face code for this camera on camera hardware used in a
recent JPL mission. The proxy code and the camera
hardware it interfaces with will probably not be the
same as that used by MDS mission customers. How-
ever mission adaptation of MDS camera proxy code to
interface with a real mission camera should be rela-
tively straight forward and should not impact the appli-
cation code sitting above it.

Summary

The MDS project is not very far into its first circuit of
its outer loop cycle. It is much too early in the MDS
development effort to predict the success or failure of
the MDS approach for future mission software devel-
opment at the laboratory. This paper has described
MDS software lifecycle processes and how these proc-
esses should contribute to the success both of the MDS
project and of MDS mission customer projects. The
MDS team’s progress will have to be monitored and re-
evaluated on a frequent basis as the team proceeds
through their lifecycle for the first time. Some adjust-
ments to the processes and tools may need to be made
as the team moves forward.

The MDS development approach is very ambitious. It
pilots changes to mission software development that are
not only technical but political. MDS customer project
personnel and their managers are not familiar with
MDS software development processes, methods or
tools. Nor are these projects organized to accommodate
a unified mission software development effort. The
MDS project will not be successful if it is only success-
ful in producing an MDS reference mission system.
The MDS team will need to work closely with initial
MDS customer mission projects in order to assure that
these customer projects successfully adapt MDS to their
particular mission needs. The MDS approach to mis-
sion software development has a lot of potential for
improving the way mission software is developed
across the laboratory. MDS needs successful customers
to realize this potential.

Acknowledgments

7
American Institute of Aeronautics and Astronautics

The work described in this paper is being carried out at
the Jet Propulsion Laboratory, California Institute of
Technology as part of process engineering for the Mis-
sion Data System Project.
.

REFERENCES

1 D. Dvorak, A. Sacks, R. Rasmussen,
"Software Architectural Themes in the
Mission Data System," AIAA conference
paper, AIAA Space Technology Confer-
ence, September 1999

2 B. P. Douglass, Real-Time UML: Devel-
oping Efficient Objects for Embedded
Systems, Addision-Wesley, 1998

3 B. P. Douglass, Doing Hardtime: Devel-
oping Real-Time Systems with UML
Objects, Frameworks and Patterns, Ad-
dision-Wesley, 1999

